Fusion Rules for the Vertex Operator Algebras M (1)

نویسندگان

  • Toshiyuki Abe
  • Chongying Dong
  • Hai-Sheng Li
چکیده

The fusion rules for the vertex operator algebras M(1)+ (of any rank) and V + L (for any positive definite even lattice L) are determined completely.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certain extensions of vertex operator algebras of affine type

We generalize Feigin and Miwa’s construction of extended vertex operator (super)algebras Ak(sl(2)) for other types of simple Lie algebras. For all the constructed extended vertex operator (super)algebras, irreducible modules are classified, complete reducibility of every module is proved and fusion rules are determined modulo the fusion rules for vertex operator algebras of affine type.

متن کامل

Some finiteness properties of regular vertex operator algebras

We give a natural extension of the notion of the contragredient module for a vertex operator algebra. By using this extension we prove that for regular vertex operator algebras, Zhu’s C2-finiteness condition holds, fusion rules (for any three irreducible modules) are finite and the vertex operator algebras themselves are finitely generated.

متن کامل

Vertex operator algebras, fusion rules and modular transformations

We discuss a recent proof by the author of a general version of the Verlinde conjecture in the framework of vertex operator algebras and the application of this result to the construction of modular tensor tensor category structure on the category of modules for a vertex operator algebra.

متن کامل

On intertwining operators and finite automorphism groups of vertex operator algebras

Let V be a simple vertex operator algebra and G a finite automorphism group. We give a construction of intertwining operators for irreducible V G-modules which occur as submodules of irreducible V -modules by using intertwining operators for V . We also determine some fusion rules for a vertex operator algebra as an application.

متن کامل

iv : h ep - t h / 93 12 06 5 v 1 9 D ec 1 99 3 Vertex Operator Superalgebras and Their Representations ∗ †

Vertex operator algebras (VOA) were introduced in physics by Belavin, Polyakov and Zamolodchikov [BPZ] and in mathematics by Borcherds [B]. For a detailed exposition of the theory of VOAs see [FLM] and [FHL]. In a remarkable development of the theory, Zhu [Z] constructed an associative algebra A(V ) corresponding to a VOA V and established a 1-1 correspondence between the irreducible representa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008